IMAGE SEGMENTATION USING FUZZY LVQ CLUSTERING NETWORKS Eric

نویسندگان

  • Chen-Kuo Tsao
  • James C. Bezdek
  • Nikhil R Pal
چکیده

In this note we formulate image segmentation as a clustering problem. Feature vectors, extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of Kohonen learning vector quantization (LVQ) which integrates the Fuzzy cMeans (FCM) model with the learning rate and updating strategies of the LVQ Is used for this task. This network, which segments Images in an unsupervised manner, is thus related to the FCM optimization problem. Numerical examples on photographic and magnetic resonance images are given to Illustrate this approach to image segmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Segmentation Using Fuzzy Lvq Clustering Networks

In this note we formulate image segmentation as a clustering problem. Feature vectors, extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of Kohonen learning vector quantization (LVQ) which integrates the Fuzzy cMeans (FCM) model with the learning rate and updating strategies of the LVQ Is used for this task. This network, which segmen...

متن کامل

Image Segmentation Using Fuzzy

In this note we formulate image segmentation as a clustering problem. Feature vectors, extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of Kohonen learning vector quantization (LVQ) which integrates the Fuzzy cMeans (FCM) model with the learning rate and updating strategies of the LVQ Is used for this task. This network, which segmen...

متن کامل

Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach

Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010